Reconfigurable Fabric

D. Estrin
M. Srivastava

G. Reinman
M. Sarrafzadeh

UCLA
Los Angeles, CA
Rfab.cs.ucla.edu
Flexible Electronics

- Components built on a thin flexible material
- Provide opportunity to weave computation, storage, and communication into the fabric of the very clothing that we wear
- Biomedical implications
 - Computational devices in close proximity to the human body
 - Sensors and actuators enable new levels of interaction with the body
 - Drug delivery or modulation
Challenges

- Underlying technological differences
 - less mature than silicon-based electronics
 - computation-communication cost tradeoffs
 - organic interconnect has high resistance and capacitance
- Not just a traditional system with flexible form factor!
 - need new architectures
 - need new design tools
Further Challenges

- Different application challenges
 - environmental dynamics
 - physical coupling
 - resource constraints
 - infrastructure support
 - robustness requirements

- Requires radical innovation to realize this vision outside of the laboratory!
Reconfigurable Fabric Vest

- RFabVest
 - Medical vest for sensor-driven personalized trans-dermal drug-delivery
 - medical treatment
 - hazardous environments
 - Low-latency, fine-grained adaption of drug dosage based on continual physiological and possibly environmental measurements

- Sensors
 - interior and exterior

- Actuators
 - drug delivery system
Transdermal Drug Delivery

- Non-invasive
- Diffusion-controlled
- Augmented by electroosmosis
- Already used for
 - cardiac drugs (nitroglycerine, clonidine, etc)
 - hormones (estradiol, progesterone, etc)
- Benefits
 - higher drug concentration
 - elimination of gastrointestinal complications
 - elimination of infections from needles or pumps
 - patient compliance
Fault Tolerant Approach

- **RFabVest must have high availability**
 - tolerate tears and punctures
 - especially in hazardous environments
 - tolerate device failures

- **Redundancy!**
 - Replicated functionality
 - sensors and actuators
 - Distributed control
 - no single point of failure
 - Redundant or reroutable interconnect
Additional Benefits of Decentralization

- Sensing and Actuation are distributed across fabric
 - improved detection and remediation
- Control must also be distributed
 - tolerate communication constraints
 - close proximity to sensors and actuators
- Ergonomic considerations
 - electronics should be lightweight and low-profile
High Level Issues

- Reconfigurable Fabric
- E-Buttons
- Reconfiguration in the presence of device malfunction or damage
- E-Button Coordination
- Related Work
- Conclusions
Reconfigurable Fabric

- Large, flexible backplane
- Arbitrarily shaped (i.e. vest or shirt)
- Integrated wiring
 - perhaps with simple switches, latches, etc
 - redundant interconnect
- Complexity of integrated electronics is limited
 - More complex devices can be attached to fabric
 - Well-defined attachment points for external electronics
Organic Electronics

- Flexible, rugged, lightweight electronic circuit
 - fabricated at lower temperatures
 - potentially lower cost to manufacture
- UCLA has already demonstrated
 - transistors, diodes, LEDs, memory
- Reconfigurable Fabric
 - Organic electronic devices deposited on flexible polymeric substrates
 - Combination of inkjet printing and self-assembly method
E-Buttons

- Software-reconfigurable elements
- Attached to the Reconfigurable Fabric
- Sensor Buttons
- Control Buttons
- Actuator Buttons
- Other buttons?
 - communication, memory, signal processing
- Redundant E-Button placement
Architectural Overview

Sensor Buttons

Fabric Network

Low-pass Filter & Data Fusion

Control Buttons

Network

Drug 1

Drug 2

Drug 3

Drug 4

Drug 5

Actuator Buttons

Temp

A-D

Drug 1

Drug 2

Fabric Network

Single Physiological Parameter

Additional Physiological Parameters

Control

Temp

A-D

Temp

A-D

Temp

A-D

Temp

A-D

Sensor Buttons

Control Buttons

Actuator Buttons
RFab must configure itself based on
- initially available resources
- ongoing damage monitoring

2 alternatives
- passive wiring
 - connections are redundant
 - multihop packet routers
- software-controlled, electrical signal routers
 - switches and latches on fabric
 - controlled by distributed reconfiguration management service
Interconnect Reconfiguration
Interconnect Reconfiguration
Interconnect Reconfiguration
2-Way-Diffusion for Control
- useful in “detection and tracking” systems
- processing “in the network”
- initial broad distribution of data
- then gradients for efficient and effective data communication are reinforced

Control Groups
- loosely coupled clusters of sensors and actuators
- 2-way diffusion will build control groups
- groups will refresh periodically to allow for discovery of topological changes in RFabVest
Adaptive Fidelity
- self-organize to meet current system demand
- want maximal actuator coverage
- want predictability and reliability

Must ensure correct dosage is applied
- ONLY when required!
Wireless Sensor Networks

- **Analogous Features**
 - communication constraints are severe
 - systems are tightly coupled to physical world
 - must adapt to unforeseen environmental dynamics
 - self-organizing (i.e. no human intervention)

- **Key Differences**
 - node deployment is not ad hoc
 - interconnect is not wireless media
 - drug delivery requires reliable and predictable behavior
Power Considerations

- Need to balance
 - Fault tolerance and system response time
 - Energy consumption requirements

- Redundant sensors may be put in sleep mode
 - a given control group can be powered down
 - but communication costs might outweigh benefit
 - communication is costly

- Duty cycle scheme
 - control groups can be periodically woken up
 - shutdown time related to required QoS
Control Button Design

- Range from simple FSMs to more complex embedded processors
 - area, timing, energy, and performance
- Software reconfigurable to meet application needs
 - essential to meet needs of different medical applications
 - minimize energy consumption
 - reduced manufacturing cost
 - Software Parameterized Blocks (SPB)
 - Basic structure is fixed
 - Minimize reconfiguration time
Related work

- The Smart Shirt from Sensatex
 - http://www.sensatex.com/technology.htm
 - wearable health monitoring device that integrates a number of sensory devices onto the Wearable Motherboard from Georgia Tech (http://www.gtwm.gatech.edu/).
 - no actuation
 - no dynamic reconfiguration in the presence of rips or tears
 - centralized control

- Other projects:
 - www-2.cs.cmu.edu/afs/cs.cmu.edu/project/vuman/www/home.html
 - wearables.gatech.edu/
 - www.iis.fhg.de/pwn/technology/body_com/index.html
Emerging technology of flexible electronics promises to transform biomedical practice and research

Seamless and fault tolerant integration of
- communicating computation and storage resources
- physiological and environmental sensors
- biomedical actuators
- all in close proximity to the human body

RFab Vest is a driver application for new technologies and architectures in the field of flexible electronics
Contact Info

Deborah Estrin
destrin@cs.ucla.edu

Glenn Reinman
reinman@cs.ucla.edu

Mani Srivastava
mbs@ee.ucla.edu

Majid Sarrafzadeh
majid@cs.ucla.edu

Rfab.cs.ucla.edu